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Abstract: Data Intensive scientific computing involves organizing, moving, visualizing, and analyzing massive amounts 

of data from around the world, as well as employing large-scale computation. There are systems that try to unify job and 

data management, but these are two different tasks to face in a Grid environment. Existing systems have tried to achieve 

only either job scheduling or data replication and does not provide fault tolerance. Data replication and job scheduling 

are two different but complementary functions in Data Grids: one to minimize the total file access cost (thus total job 

execution time of all sites), and the other to minimize the MakeSpan (the maximum job completion time among all 

sites). The two main challenges: first, how to formulate a problem that incorporates not only data replication but also job 

scheduling, and which addresses both total access cost and maximum access cost; and second, how to find an efficient 

algorithm that, if it cannot find optimal solutions of minimizing total/maximum access cost, gives near-optimal solution 

for both objectives in the proposed system. A novel method to achieve maximum fault tolerance in the Grid environment 

system by using a fault recovery pool is proposed.  
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I INTRODUCTION 

i) Introduction 

Grid computing joins together many individual devices, 

creating a distributed system with massive computational 

power that far surpasses the power of a handful of 

supercomputers. Because the work is split into small 

pieces that can be processed simultaneously, research time 

is reduced from years to months. The technology is also 

more cost-effective, enabling better use of critical funds. 

The grid computing is a special kind of distributed 

computing. In distributed computing, different computers 

within the same network share one or more resources. In 

the ideal grid computing system, every resource is shared, 

turning a computer network into a powerful 

supercomputer. With the right user interface, accessing a 

grid computing system would look no different than 

accessing a local machine's resources. Every authorized 

computer would have access to enormous processing 

power and storage capacity. 

Grid computing paradigm unites geographically-

distributed and heterogeneous computing, storage, and 

network resources and provide unified, secure, and 

pervasive access to their combined capabilities. Therefore, 

Grid platforms enable sharing, exchange, discovery, 

selection, and aggregation of distributed heterogeneous 

resources such as computers, databases, visualization 

devices, and scientific instruments. Grid Computing can  

 

 

be defined as applying resources from many computers in 

a network to a single problem, usually one that requires a 

large number of processing cycles or access to large 

amounts of data.   

Grid computing systems work on the principle of pooled 

resources. A grid computing system uses that same 

concept: share the load across multiple computers to 

complete tasks more efficiently and quickly. Computer's 

resources are: 

 Central processing unit (CPU): A CPU is a 

microprocessor that performs mathematical operations and 

directs data to different memory locations. Computers can 

have more than one CPU. 

 Memory: In general, a computer's memory is a 

kind of temporary electronic storage. Memory keeps 

relevant data close at hand for the microprocessor. 

Without memory, the microprocessor would have to 

search and retrieve data from a more permanent storage 

device such as a hard disk drive. 

 Storage: In grid computing terms, storage refers 

to permanent data storage devices like hard disk drives or 

databases. 

Normally, a computer can only operate within the 

limitations of its own resources. There's an upper limit to 

http://computer.howstuffworks.com/microprocessor.htm
http://computer.howstuffworks.com/pc.htm
http://computer.howstuffworks.com/microprocessor.htm
http://computer.howstuffworks.com/computer-memory.htm
http://computer.howstuffworks.com/hard-disk.htm
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how fast it can complete an operation or how much 

information it can store. Most computers are upgradeable, 

which means it's possible to add more power or capacity 

to a single computer, but that's still just an incremental 

increase in performance. 

Grid computing systems link computer resources together 

in a way that lets someone use one computer to access and 

leverage the collected power of all the computers in the 

system. To the individual user, it's as if the user's 

computer has transformed into a supercomputer. 

 

ii)  Data Grids 

A data grid is an architecture or set of services that gives 

individuals or groups of users the ability to access, modify 

and transfer extremely large amounts of geographically 

distributed data for research purposes. Data grids make 

this possible through a host of middleware applications 

and services that pull together data and resources from 

multiple administrative domains and then present it to 

users upon request. The data in a data grid can be located 

at a single site or multiple sites where each site can be its 

own administrative domain governed by a set of security 

restrictions as to who may access the data. Likewise, 

multiple replicas of the data may be distributed throughout 

the grid outside their original administrative domain and 

the security restrictions placed on the original data for who 

may access it must be equally applied to the replicas. 

Specifically developed data grid middleware is what 

handles the integration between users and the data they 

request by controlling access while making it available as 

efficiently as possible. 

Therefore, Grids are concerned with issues such as: 

sharing of resources, authentication and authorization of 

entities, and resource management and scheduling for 

efficient and effective use of available resources. 

Naturally, Data Grids share these general concerns, but 

have their own unique set of characteristics and challenges 

listed below: 

 Massive Datasets:  

Data-intensive applications are characterized by the 

presence of large datasets of the size of Gigabytes (GB) 

and beyond. For example, the CMS experiment at the 

LHC is expected to produce 1 PB (1015 bytes) of RAW 

data and 2 PB of Event Summary Data (ESD) annually 

when it begins production .Resource management within 

Data Grids therefore extends to minimizing latencies of 

bulk data transfers, creating replicas through appropriate 

replication strategies and managing storage resources. 

 Shared Data Collections:  
Resource sharing within Data Grids also includes, among 

others, sharing distributed   data collections. For example, 

participants within a scientific collaboration would want to 

use the same repositories as sources for data and for 

storing the outputs of    their analyses. 

 Unified Namespace:  

The data in a Data Grid share the same logical namespace 

in which every data element has a unique logical filename. 

The logical filename is mapped to one or more physical 

filenames on various storage resources across a Data Grid. 

 Access Restrictions:  

Users might wish to ensure confidentiality of their data or 

restrict distribution to close  collaborators. Authentication 

and authorization in Data Grids involves coarse to fine-

grained access controls over shared data collections. 

 Accelerating Large- Scale Data Exploration 

through Data Diffusion 

An alternative approach data diffusion approach, in which 

resources required for data analysis are acquired 

dynamically, in response to demand. Resources may be 

acquired either “locally” or “remotely”; their location only 

matters in terms of associated cost tradeoffs. Both data and 

applications are copied (they “diffuse”) to newly acquired 

resources for processing.  Acquired resources (computers 

and storage) and the data that they hold can be “cached” 

for some time, thus allowing more rapid responses to 

subsequent requests. If demand drops, resources can be 

released, allowing their use for other purposes. Thus, data 

diffuses over an increasing number of CPUs as demand 

increases, and then contracting as load reduces.   

Data diffusion thus involves a combination of dynamic 

resource provisioning, data caching, and data-aware 

scheduling. The approach is reminiscent of cooperative 

caching cooperative web-caching and peer-to-peer storage 

systems (Other data-aware scheduling approaches tend to 

assume static resources However, in our approach we need 

to acquire dynamically not only storage resources but also 

computing resources. In addition, datasets may be 

terabytes in size and data access is for analysis (not 

retrieval). Further complicating the situation is our limited 

knowledge of workloads, which may involve many 

different applications. The restrictions prevailing in this 

model is it does not allow for keeping multiple copies of 

an object simultaneously in different sites. 

 

II EXISTING SYSTEM 
Replication has been an active research topic for many 

years in World Wide Web [33], peer-to-peer networks [3], 

ad hoc and sensor networking [23], [40], and mesh 

networks [26]. In Data Grids, enormous scientific data and 

complex scientific applications call for new replication 

algorithms, which have attracted much research recently. 

The most closely related work to ours is by copies of an 

object simultaneously in different stores. In our model, we 

assume each object can have multiple copies, each on a 

different site. Some economical model-based replica 

schemes are proposed. The authors in [9], [7] use an 

auction protocol to make the replication decision and to 

trigger long-term optimization by using file access 

patterns. You et al. [40] propose utility-based replication 

strategies. Lei et al. [28] and Schintke and Reinefeld [39] 

address the data replication for availability in the face of 

unreliable components, which is different from our work. 

Jiang and Zhang [25] propose a technique in Data Grids to 

measure how soon a file is to be reaccessed before being 

evicted compared with other files. They consider both the 

consumed disk space and disk cache size. Their approach 

http://en.wikipedia.org/wiki/Architecture
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Middleware
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Service_%28systems_architecture%29
http://en.wikipedia.org/wiki/Resource_%28computer_science%29
http://en.wikipedia.org/wiki/Administrative_domain
http://en.wikipedia.org/wiki/Replica
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can accurately rank the value of each file to be cached. 

Tang et al. [40] present a dynamic replication algorithm 

for multitier Data Grids. They propose two dynamic 

replica algorithms: Single Bottom Up and Aggregate 

Bottom Up. Performance results show both algorithms 

reduce the average response time of data access compared 

to a static replication strategy in a multitier Data Grid. 

Chang and Chang [11] propose a dynamic data replication 

mechanism called Latest Access Largest Weight (LALW). 

LALW associates a different weight to each historical data 

access record: a more recent data access has a larger 

weight. LALW gives a more precise metric to determine a 

popular file for replication. Park et al. [31] propose a 

dynamic replica replication strategy, called BHR, which 

benefits from “network- level locality” to reduce data 

access time by avoiding networking congestion in a Data 

Grid. Lamehamedi et al. [27] propose a lightweight Data 

Grid middleware, at the core of which are some dynamic 

data and replica location and placement techniques. 

Ranganathan and Foster [37] present six different 

replication strategies: No Replication or Caching, Best 

Client, Cascading Replication, Plain caching, Caching 

plus Cascading Replication, and Fast Spread. All of these 

strategies are evaluated with three user access patterns 

(Random Access, Temporal Locality, and Geographical 

plus Temporal Locality). Via the simulation, the authors 

find that Fast Spread performs the best under Random 

Access, and Cascading would work better than others 

under Geographical and Temporal Locality. Due to its 

wide popularity in the literature and its simplicity to 

implement, we compare our distributed replication 

algorithm to this work. Systemwise, there are several real 

testbed and system implementations utilizing data 

replication. One system is the Data Replication Service 

(DRS) designed by Chervenak et al. [15]. DRS is a higher 

level data management service for scientific collaborations 

in Grid environments. It replicates a specified set of files 

onto a storage system and registers the new files in the 

replica catalog of the site. Another system is Physics 

Experimental Data Export (PheDEx) system [19]. PheDEx 

supports both the hierarchical distribution and 

subscription-based transfer of data. To execute the 

submitted jobs, each Grid site either gets the needed input 

data files to its local computing resource, schedules the job 

at sites where the needed input data files are stored, or 

transfers both the data and the job to a third site that 

performs the computation and returns the result. In this 

paper, we focus on the first approach. We leave the job 

scheduling problem [40], which studies how to map jobs 

into Grid resources for execution, and it’s coupling with 

data replication, as our future research. We are aware of 

very active research studying the relationship between 

these two [10], [36], [14], [21], [12], [40], [17], [8]. The 

focus of our paper, however, is on the data replication 

strategy with a provable performance guarantee. As 

demonstrated by the experiments of Chervenak et al. [15], 

the time to execute a scientific job is mainly the time it 

takes to transfer the needed input files from server sites to 

local sites. Similar to other work in replica management 

for Data Grids [28], [39], [8], we only consider the file 

transfer time (access time), not the job execution time in 

the processor or any other internal storage processing or 

I/O time. Since the data are read only for many Data Grid 

applications [36], we do not consider consistency 

maintenance between the master file and the replica files. 

For readers who are interested in the consistency 

maintenance in Data Grids, please refer to [18], [40], [32]. 

 

III  PROPOSED SYSTEM 

Data replication and job scheduling are two different but 

complementary functions in Data Grids: one to minimize 

the total file access cost (thus total job execution time of 

all sites), and the other to minimize the Makespan (the 

maximum job completion time among all sites).There are 

two main challenges: first, how to formulate a problem 

that incorporates not only data replication but also job 

scheduling, and which addresses both total access cost and 

maximum access cost; and second, how to find an efficient 

algorithm that, if it cannot find optimal solutions of 

minimizing total/maximum access cost, gives near-optimal 

solution for both objectives. The prime motive of data 

replication in intensive application is that to reduce the 

data file transfer time and bandwidth consumption. In 

order to minimize the MakeSpan we use Optimal 

MakeSpan algorithm and for polynomial time Nominal 

Distribution strategy has been used and it reduces the total 

data file access delay by at least half of that reduced is 

proposed in this paper. Both the algorithms are adaptive to 

the dynamic change of file access patterns in Data Grids. 

Since grid applications run in a very heterogeneous 

computing environment, fault tolerance is important in 

order to ensure their correct behavior. Using GridSim, a 

popular distributed Grid simulator, it can be demonstrated 

that the technique significantly outperforms an existing 

popular file caching technique in Data Grids. 

 

i) System Architecture 

 
Fig:1  System Architecture 
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Modules Description 

• Building Sites 

•       Centralized Site 

• Replica Sites 

• Replica Distribution  

• Optimal Cost Constraint 

• Data Caching in Replicas 

• Fault Tolerant Mechanism  

• Makespan Algorithm 

• CRC/NRC Updations  

 Building Site 

 In this module the centralized site is created. The sensus 

dataset is collected and organized in the form of .txt Files. 

As given in our paper the subsites are created according to 

the files. For instance the number of files is equal to the 

number of subsites. The top level site created is the 

centralized management entity in the entire Data Grid 

environment, and its major role is to mange the 

Centralized Replica Catalogue (CRC). CRC provides 

location information about each data file and its replicas, 

and it is essentially a mapping between each data file and 

all the institutional sites where the data is replicated. Each 

site (top level site or institutional site) may contain 

multiple grid resources. A grid resource could be either a 

computing resource, which allows users to submit and 

execute jobs, or a storage resource, which allows users to 

store data files. We assume that each site has both 

computing and storage capacities, and that within each 

site, the bandwidth is high enough that the communication 

delay inside the site is negligible. 

 

 Replica Distribution  

In this we predict the Optimizing cost constraint and 

implement the Nominal Distribution Algorithm and then 

transmit as One file per site and terminates replicating 

files as per cost constraint. 

 

 Optimal Cost Constraints 
Let D be the centralized site.Assume  Grid  site G as the 

centralized Site. Let the  Site G has n jobs {j1,j2,-----------jn 

}      i.e Input Files M - A1,A2 . . ..An, where Aj Ϲ V is a set 

of Grid sites that store a replica copy of Dj,evaluate Total 

No of jobs submitted, Assume that the Grid site i has ni 

submitted jobs. The job is denoted as tik Which means that 

needs a subset Fik of D as its input files. Calculate wij to 

denote the number of times that site i needs Dj as an input 

file, wij =  where ck = 1 if Dj needs file Fik and 

ck = 0 otherwise. The transmission time of sending data 

file Dj along any edge (Network ) is sj/B. We use dij to 

denote the number of transmissions to transmit a data file 

from site i and j (which is equal to the number of edges 

between these two sites). The total data file access cost in 

Data Grid before replication is the total transmission time 

spent to get all needed data files for each site:  

                           

 

 Data Caching in Replicas 

Objective is to minimize the total access cost in the Data 

Grid:Our Nominal  Distribution is a greedy algorithm. 

First, all Grid sites have all empty storage space (except 

for sites that originally produce and store some files). 

Then, at each step, it places one data file into the storage 

space of one site such that the reduction of total access 

cost in the Data Grid is maximized at that step.  

 Fault Tolerant Mechanism  

A partial failure may happen when one component in such 

system fails. This failure may affect the proper operation 

of other components while at the same time leaving yet 

other components totally unaffected. An important goal in 

such systems design is to construct the system in a  way 

that it can automatically recover from partial failures 

without seriously affecting the overall performance and 

continue to operate in  an acceptable way while repairs are 

being made when applied to large scale distributed settings 

(e.g., the Internet). In particular, they fail in providing the 

desired degree of configurability, scalability, and 

customizability.  

 

 Makespan Algorithm 

The job scheduling system is responsible to select best 

suitable machines in a grid for user jobs. The management 

and scheduling system generates job schedules for each 

machine in the grid by taking static restrictions and 

dynamic parameters of jobs and machines into 

consideration.  

 

 CRC/NRC Updations 

The top level site maintains a Centralized Replica 

Catalogue (CRC), which is essentially a list of replica site 

list Cj for each data file Dj. The replica site list Cj contains 

the set of sites (including source site Sj) that has a copy of 

Dj. Nearest Replica Catalog (NRC). Each site i in the Grid 

maintains an NRC, and each entry in the NRC is of the 

form (Dj,Nj ).Each site i original graph G has m memory 

space, the nearest site that has a replica of Dj. When a site 

executes a job, from its NRC, it determines the nearest 

replicate site for each of its input data files and goes to it 

directly to fetch the file (provided the input file is not in its 

local storage). As the initialization stage, the source sites 

send messages to the top level site informing it about their 

original data files. Thus, the centralized replica catalog 

initially records each data file and its source site. The top 

level site then broadcasts the replica catalogue to the entire 

Data Grid. Each Grid site initializes its NRC to the source 

site of each data file. Note that if i is the source site of Dj 

or has cached Dj, then Nj is interpreted as the second 

nearest replica site, i.e., the closest site (other than i itself) 

that has a copy of Dj. The second nearest replica site 

information is helpful when site i decides to remove the 

cached file Dj. If there is a cache miss, the request is 

redirected to the top level site, which sends the site replica 

site list for that data file. 

For processing this module the data files are collected 

again. The neighboring sites are analyzed and the files are 

sent to the replicas.  
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On successfully sending those files to replica sites, the 

Localized data caching algorithm is implemented.. Since 

each site has limited storage capacity, a good data caching 

algorithm that runs distributedly on each site is needed. To 

do this, each site observes the data access traffic locally 

for a sufficiently long time. The local access traffic 

observed by site i includes its own local data requests, 

nonlocal data requests to data files cached at i, and the 

data request traffic that the site i is forwarding to other 

sites in the network. 

The file request is consequently provided at  the traffic 

less sites. 

 

IV   CONCLUSION 

In this paper we focus on how to replicate data files in data 

intensive scientific applications, to reduce the file access 

time with the consideration of limited storage space of 

Grid sites along with fault tolerance. GridSim, a popular 

distributed Grid simulator, is used to demonstrate a 

technique that significantly outperforms an existing 

popular file caching technique in Data Grids 

 

References 

 
[1] Dharma Teja Nukarapu, Liqiang Wang  and Shiyong Lu “Data 

Replication in Data Intensive Scientific Applications with Performance 
Guarantee”, August 2011 

[2] The Large Hadron Collider, http://public.web.cern.ch/Public/ 

en/LHC/LHC-en.html, 2011. 
[3] Worldwide Lhc Computing Grid, http://lcg.web.cern.ch/LCG/, 2011. 

[4] A. Aazami, S. Ghandeharizadeh, and T. Helmi, “Near Optimal 

Number of Replicas for Continuous Media in Ad-Hoc Networks of 
Wireless Devices,” Proc. Int’l Workshop Multimedia Information 

Systems, 2004. 

[5] B. Allcock, J. Bester, J. Bresnahan, A.L. Chervenak, C. Kesselman, 
S. Meder, V. Nefedova, D. Quesnel, S. Tuecke, and I. Foster, “Secure, 

Efficient Data Transport and Replica Management for High-Performance 
Data-Intensive Computing,” Proc. IEEE Symp.  Mass Storage Systems 

and Technologies, 2001. 

[6] I. Baev and R. Rajaraman, “Approximation Algorithms for Data 
Placement in Arbitrary Networks,” Proc. ACM-SIAM Symp. Discrete 

Algorithms (SODA), 2001. 

[7] I. Baev, R. Rajaraman, and C. Swamy, “Approximation Algorithms 
for Data Placement Problems,” SIAM J. Computing, vol. 38, no. 4, pp. 

1411-1429, 2008. 

[8] W.H. Bell, D.G. Cameron, R. Cavajal-Schiaffino, A.P. Millar, K. 
Stockinger, and F. Zini, “Evaluation of an Economy-Based File 

Replication Strategy for a Data Grid,” Proc. Int’l Workshop Agent Based 

Cluster Computing and Grid (CCGrid), 2003. 
[9] D.G. Cameron, A.P. Millar, C. Nicholson, R. Carvajal-Schiaffino, K.  

Stockinger, and F. Zini, “Analysis of Scheduling and Replica 

Optimisation Strategies for Data Grids Using Optorsim,” J. Grid 
Computing, vol. 2, no. 1, pp. 57-69, 2004. 

[10] M. Carman, F. Zini, L. Serafini, and K. Stockinger, “Towards an 

Economy-Based Optimization of File Access and Replication on a Data 
Grid,” Proc. Int’l Workshop Agent Based Cluster Computing and Grid 

(CCGrid), 2002. 

[11] A. Chakrabarti and S. Sengupta, “Scalable and Distributed 
Mechanisms for Integrated Scheduling and Replication in Data Grids,” 

Proc. 10th Int’l Conf. Distributed Computing and Networking (ICDCN), 

2008. 
[12] R.-S. Chang and H.-P. Chang, “A Dynamic Data Replication 

Strategy Using Access-Weight in Data Grids,” J. Supercomputing, vol. 

45, pp. 277-295, 2008. 
[13] R.-S. Chang, J.-S. Chang, and S.-Y. Lin, “Job Scheduling and Data 

Replication on Data Grids,” Future Generation Computer Systems, vol. 

23, no. 7, pp. 846-860, Aug. 2007. 

[14] A. Chebotko, X. Fei, C. Lin, S. Lu, and F. Fotouhi, “Storing and 

Querying Scientific Workflow Provenance Metadata Using an Rdbms,” 
Proc. IEEE Int’l Conf. e-Science and Grid Computing, 2007. 

[15] A. Chervenak, E. Deelman, M. Livny, M.-H. Su, R. Schuler, S. 

Bharathi, G. Mehta, and K. Vahi, “Data Placement for Scientific 
Applications in Distributed Environments,” Proc. IEEE/ACM Int’l Conf. 

Grid Computing, 2007. 

[16] A. Chervenak, R. Schuler, C. Kesselman, S. Koranda, and B. Moe, 
“Wide Area Data Replication for Scientific Collaboration,” Proc. 

IEEE/ACM Int’l Workshop Grid Computing, 2005.  

[17] A. Chervenak, R. Schuler, M. Ripeanu, M.A. Amer, S. Bharathi, I. 
Foster, and C. Kesselman, “The Globus Replica Location Service: 

Design and Experience,” IEEE Trans. Parallel and Distributed Systems, 

vol. 20, no. 9, pp. 1260-1272, Sept. 2009. 

[18] N.N. Dang and S.B. Lim, “Combination of Replication and 

Scheduling in Data Grids,” Int’l J. Computer Science and Network 

Security, vol. 7, no. 3, pp. 304-308, Mar. 2007. 
[19] D. Du¨ llmann and B. Segal, “Models for Replica Synchronisation 

and Consistency in a Data Grid,” Proc. 10th IEEE Int’l Symp. High 

Performance Distributed Computing (HPDC), 2001. 
[20] J. Rehn et al., “Phedex: High-Throughput Data Transfer 

Management System,” Proc. Computing in High Energy and Nuclear 

Physics (CHEP), 2006. 
[21] I. Foster, “The Grid: A New Infrastructure for 21st Century 

Science,” Physics Today, vol. 55, pp. 42-47, 2002. 

[22] I. Foster and K. Ranganathan, “Decoupling Computation and Data 
Scheduling in Distributed Data-Intensive Applications,” Proc. 11th IEEE 

Int’l Symp. High Performance Distributed Computing (HPDC), 2002. 

[23] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and Grid 
Computing 360-Degrees Compared,” Proc. Grid Computing 

Environments Workshop, pp. 1-10, 2008. 

[24] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed 
Diffusion: A Scalable and Robust Communication Paradigm for Sensor 

Networks,” Proc. ACM MobiCom, 2000. 

[25] J.C. Jacob, D.S. Katz, T. Prince, G.B. Berriman, J.C. Good, A.C. 
Laity, E. Deelman, G. Singh, and M.-H Su, “The Montage Architecture 

for Grid-Enabled Science Processing of Large, Distributed Datasets,” 

Proc. Earth Science  technology Conf., 2004. 
[26] S. Jiang and X. Zhang, “Efficient Distributed Disk Caching in Data 

Grid Management,” Proc. IEEE Int’l Conf. Cluster Computing, 2003.  

[27] S. Jin and L. Wang, “Content and Service Replication Strategies in 
Multi-Hop Wireless Mesh Networks,” Proc. ACM Int’l Conf.  Modeling, 

Analysis and Simulation of Wireless and Mobile Systems (MSWiM), 
2005. 

[28] H. Lamehamedi, B.K. Szymanski, and B. Conte, “Distributed Data 

Management Services for Dynamic Data Grids,” unpublished. 
[29] M. Lei, S.V. Vrbsky, and X. Hong, “An Online Replication 

Strategyto Increase Availability in Data Grids,” Future Generation 

Computer Systems, vol. 24, pp. 85-98, 2008. 
[30] C. Lin, S. Lu, X. Fei, A. Chebotko, D. Pai, Z. Lai, F. Fotouhi, and J. 

Hua, “A Reference Architecture for Scientific Workflow Management 

Systems and the View Soa Solution,” IEEE Trans. Services Computing, 
vol. 2, no. 1, pp. 79-92, Jan.-Mar. 2009.  

[31] M. Mineter, C. Jarvis, and S. Dowers, “From Stand-Alone Programs 

towards Grid-Aware Services and Components: A Case Study in 
Agricultural Modelling with Interpolated Climate Data,” Environmental 

Modelling and Software, vol. 18, no. 4, pp. 379-391, 2003. 

[32] S.M. Park, J.H. Kim, Y.B. Lo, and W.S. Yoon, “Dynamic Data Grid 
Replication Strategy Based on Internet Hierarchy,” Proc. Second Int’l 

Workshop Grid and Cooperative Computing (GCC), 2003.  

[33] J. Pe´rez, F. Garcı´a-Carballeira, J. Carretero, A. Caldero´ n, and J. 
erna´ndez, “Branch Replication Scheme: A New Model for Data 

Replication in Large Scale Data Grids,” Future Generation Computer 

Systems, vol. 26, no. 1, pp. 12-20, 2010. 
[34] L. Qiu, V.N. Padmanabhan, and G.M. Voelker, “On the Placement  

of Web Server Replicas,” Proc. IEEE INFOCOM, 2001. 

[35] I. Raicu, I. Foster, Y. Zhao, P. Little, C. Moretti, A. Chaudhary, and 
D. Thain, “The Quest for Scalable Support of Data Intensive Workloads 

in Distributed  systems,” Proc. ACM Int’l Symp. High Performance 

Distributed Computing (HPDC), 2009. 
[36] I. Raicu, Y. Zhao, I. Foster, and A. Szalay, “Accelerating Large- 

Scale Data Exploration through Data Diffusion,” Proc. Int’l Workshop 

Data-Aware Distributed Computing (DADC), 2008. 

http://public.web.cern.ch/Public/
http://lcg.web.cern.ch/LCG/


ISSN (Print)    : 2319-5940 
ISSN (Online) : 2278-1021 

   
  International Journal of Advanced Research in Computer and Communication Engineering 

 Vol. 2, Issue 8, August 2013 

 

Copyright to IJARCCE                                                                              www.ijarcce.com                                                                                 3144 

[37] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R. Sakellariou, 

K. Vahi, K. Blackburn, D. Meyers, and M. Samidi, “Scheduling Data-
Intensive Workflows onto Storage-Constrained Distributed Resources,” 

Proc. Seventh IEEE Int’l Symp. Cluster Computing and the Grid 

(CCGRID), 2007. 
[38] K. Ranganathan and I.T. Foster, “Identifying Dynamic Replication 

Strategies for a High-Performance Data Grid,” Proc. Second Int’l 

Workshop Grid Computing (GRID), 2001.  
[39] A. Rodriguez, D. Sulakhe, E. Marland, N. Nefedova, M. Wilde, and 

N. Maltsev, “Grid Enabled Server for High-Throughput Analysis of 

Genomes,” Proc. Workshop Case Studies on Grid Applications, 2004. 
[40] F. Schintke and A. Reinefeld, “Modeling Replica Availability in 

Large Data Grids,” J. Grid Computing, vol. 2, no. 1, pp. 219-227, 2003. 

[41] H. Stockinger, A. Samar, K. Holtman, B. Allcock, I. Foster, and B. 

Tierney, “File and Object Replication in Data Grids,” Proc. 10th IEEE 

Int’l Symp. High Performance Distributed Computing (HPDC) 

 

 


