
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3139

Analysis Of Fault Tolerance Approach For

Data Replication In Data Intensive Scientific

Applications

Sinu Nambiar
1
,

Prof. Rakesh Pandit

2
, Prof. Sachin Patel

 3

Student(M.Tech), PCST,Department of Information Technology,Indore,MP,India
1

Asst. Professor,

PCST,Department of Information Technology,Indore,MP,India

2

Asst. Professor & HOD, PCST,Department of Information Technology,Indore,MP,India
3

Abstract: Data Intensive scientific computing involves organizing, moving, visualizing, and analyzing massive amounts

of data from around the world, as well as employing large-scale computation. There are systems that try to unify job and

data management, but these are two different tasks to face in a Grid environment. Existing systems have tried to achieve

only either job scheduling or data replication and does not provide fault tolerance. Data replication and job scheduling

are two different but complementary functions in Data Grids: one to minimize the total file access cost (thus total job

execution time of all sites), and the other to minimize the MakeSpan (the maximum job completion time among all

sites). The two main challenges: first, how to formulate a problem that incorporates not only data replication but also job

scheduling, and which addresses both total access cost and maximum access cost; and second, how to find an efficient

algorithm that, if it cannot find optimal solutions of minimizing total/maximum access cost, gives near-optimal solution

for both objectives in the proposed system. A novel method to achieve maximum fault tolerance in the Grid environment

system by using a fault recovery pool is proposed.

Keywords: MakeSpan, Optimal MakeSpan, Nominal Distribution, Data Grid, GridSim

I INTRODUCTION

i) Introduction

Grid computing joins together many individual devices,

creating a distributed system with massive computational

power that far surpasses the power of a handful of

supercomputers. Because the work is split into small

pieces that can be processed simultaneously, research time

is reduced from years to months. The technology is also

more cost-effective, enabling better use of critical funds.

The grid computing is a special kind of distributed

computing. In distributed computing, different computers

within the same network share one or more resources. In

the ideal grid computing system, every resource is shared,

turning a computer network into a powerful

supercomputer. With the right user interface, accessing a

grid computing system would look no different than

accessing a local machine's resources. Every authorized

computer would have access to enormous processing

power and storage capacity.

Grid computing paradigm unites geographically-

distributed and heterogeneous computing, storage, and

network resources and provide unified, secure, and

pervasive access to their combined capabilities. Therefore,

Grid platforms enable sharing, exchange, discovery,

selection, and aggregation of distributed heterogeneous

resources such as computers, databases, visualization

devices, and scientific instruments. Grid Computing can

be defined as applying resources from many computers in

a network to a single problem, usually one that requires a

large number of processing cycles or access to large

amounts of data.

Grid computing systems work on the principle of pooled

resources. A grid computing system uses that same

concept: share the load across multiple computers to

complete tasks more efficiently and quickly. Computer's

resources are:

 Central processing unit (CPU): A CPU is a

microprocessor that performs mathematical operations and

directs data to different memory locations. Computers can

have more than one CPU.

 Memory: In general, a computer's memory is a

kind of temporary electronic storage. Memory keeps

relevant data close at hand for the microprocessor.

Without memory, the microprocessor would have to

search and retrieve data from a more permanent storage

device such as a hard disk drive.

 Storage: In grid computing terms, storage refers

to permanent data storage devices like hard disk drives or

databases.

Normally, a computer can only operate within the

limitations of its own resources. There's an upper limit to

http://computer.howstuffworks.com/microprocessor.htm
http://computer.howstuffworks.com/pc.htm
http://computer.howstuffworks.com/microprocessor.htm
http://computer.howstuffworks.com/computer-memory.htm
http://computer.howstuffworks.com/hard-disk.htm

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3140

how fast it can complete an operation or how much

information it can store. Most computers are upgradeable,

which means it's possible to add more power or capacity

to a single computer, but that's still just an incremental

increase in performance.

Grid computing systems link computer resources together

in a way that lets someone use one computer to access and

leverage the collected power of all the computers in the

system. To the individual user, it's as if the user's

computer has transformed into a supercomputer.

ii) Data Grids

A data grid is an architecture or set of services that gives

individuals or groups of users the ability to access, modify

and transfer extremely large amounts of geographically

distributed data for research purposes. Data grids make

this possible through a host of middleware applications

and services that pull together data and resources from

multiple administrative domains and then present it to

users upon request. The data in a data grid can be located

at a single site or multiple sites where each site can be its

own administrative domain governed by a set of security

restrictions as to who may access the data. Likewise,

multiple replicas of the data may be distributed throughout

the grid outside their original administrative domain and

the security restrictions placed on the original data for who

may access it must be equally applied to the replicas.

Specifically developed data grid middleware is what

handles the integration between users and the data they

request by controlling access while making it available as

efficiently as possible.

Therefore, Grids are concerned with issues such as:

sharing of resources, authentication and authorization of

entities, and resource management and scheduling for

efficient and effective use of available resources.

Naturally, Data Grids share these general concerns, but

have their own unique set of characteristics and challenges

listed below:

 Massive Datasets:

Data-intensive applications are characterized by the

presence of large datasets of the size of Gigabytes (GB)

and beyond. For example, the CMS experiment at the

LHC is expected to produce 1 PB (1015 bytes) of RAW

data and 2 PB of Event Summary Data (ESD) annually

when it begins production .Resource management within

Data Grids therefore extends to minimizing latencies of

bulk data transfers, creating replicas through appropriate

replication strategies and managing storage resources.

 Shared Data Collections:
Resource sharing within Data Grids also includes, among

others, sharing distributed data collections. For example,

participants within a scientific collaboration would want to

use the same repositories as sources for data and for

storing the outputs of their analyses.

 Unified Namespace:

The data in a Data Grid share the same logical namespace

in which every data element has a unique logical filename.

The logical filename is mapped to one or more physical

filenames on various storage resources across a Data Grid.

 Access Restrictions:

Users might wish to ensure confidentiality of their data or

restrict distribution to close collaborators. Authentication

and authorization in Data Grids involves coarse to fine-

grained access controls over shared data collections.

 Accelerating Large- Scale Data Exploration

through Data Diffusion

An alternative approach data diffusion approach, in which

resources required for data analysis are acquired

dynamically, in response to demand. Resources may be

acquired either “locally” or “remotely”; their location only

matters in terms of associated cost tradeoffs. Both data and

applications are copied (they “diffuse”) to newly acquired

resources for processing. Acquired resources (computers

and storage) and the data that they hold can be “cached”

for some time, thus allowing more rapid responses to

subsequent requests. If demand drops, resources can be

released, allowing their use for other purposes. Thus, data

diffuses over an increasing number of CPUs as demand

increases, and then contracting as load reduces.

Data diffusion thus involves a combination of dynamic

resource provisioning, data caching, and data-aware

scheduling. The approach is reminiscent of cooperative

caching cooperative web-caching and peer-to-peer storage

systems (Other data-aware scheduling approaches tend to

assume static resources However, in our approach we need

to acquire dynamically not only storage resources but also

computing resources. In addition, datasets may be

terabytes in size and data access is for analysis (not

retrieval). Further complicating the situation is our limited

knowledge of workloads, which may involve many

different applications. The restrictions prevailing in this

model is it does not allow for keeping multiple copies of

an object simultaneously in different sites.

II EXISTING SYSTEM
Replication has been an active research topic for many

years in World Wide Web [33], peer-to-peer networks [3],

ad hoc and sensor networking [23], [40], and mesh

networks [26]. In Data Grids, enormous scientific data and

complex scientific applications call for new replication

algorithms, which have attracted much research recently.

The most closely related work to ours is by copies of an

object simultaneously in different stores. In our model, we

assume each object can have multiple copies, each on a

different site. Some economical model-based replica

schemes are proposed. The authors in [9], [7] use an

auction protocol to make the replication decision and to

trigger long-term optimization by using file access

patterns. You et al. [40] propose utility-based replication

strategies. Lei et al. [28] and Schintke and Reinefeld [39]

address the data replication for availability in the face of

unreliable components, which is different from our work.

Jiang and Zhang [25] propose a technique in Data Grids to

measure how soon a file is to be reaccessed before being

evicted compared with other files. They consider both the

consumed disk space and disk cache size. Their approach

http://en.wikipedia.org/wiki/Architecture
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Middleware
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Service_%28systems_architecture%29
http://en.wikipedia.org/wiki/Resource_%28computer_science%29
http://en.wikipedia.org/wiki/Administrative_domain
http://en.wikipedia.org/wiki/Replica

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3141

can accurately rank the value of each file to be cached.

Tang et al. [40] present a dynamic replication algorithm

for multitier Data Grids. They propose two dynamic

replica algorithms: Single Bottom Up and Aggregate

Bottom Up. Performance results show both algorithms

reduce the average response time of data access compared

to a static replication strategy in a multitier Data Grid.

Chang and Chang [11] propose a dynamic data replication

mechanism called Latest Access Largest Weight (LALW).

LALW associates a different weight to each historical data

access record: a more recent data access has a larger

weight. LALW gives a more precise metric to determine a

popular file for replication. Park et al. [31] propose a

dynamic replica replication strategy, called BHR, which

benefits from “network- level locality” to reduce data

access time by avoiding networking congestion in a Data

Grid. Lamehamedi et al. [27] propose a lightweight Data

Grid middleware, at the core of which are some dynamic

data and replica location and placement techniques.

Ranganathan and Foster [37] present six different

replication strategies: No Replication or Caching, Best

Client, Cascading Replication, Plain caching, Caching

plus Cascading Replication, and Fast Spread. All of these

strategies are evaluated with three user access patterns

(Random Access, Temporal Locality, and Geographical

plus Temporal Locality). Via the simulation, the authors

find that Fast Spread performs the best under Random

Access, and Cascading would work better than others

under Geographical and Temporal Locality. Due to its

wide popularity in the literature and its simplicity to

implement, we compare our distributed replication

algorithm to this work. Systemwise, there are several real

testbed and system implementations utilizing data

replication. One system is the Data Replication Service

(DRS) designed by Chervenak et al. [15]. DRS is a higher

level data management service for scientific collaborations

in Grid environments. It replicates a specified set of files

onto a storage system and registers the new files in the

replica catalog of the site. Another system is Physics

Experimental Data Export (PheDEx) system [19]. PheDEx

supports both the hierarchical distribution and

subscription-based transfer of data. To execute the

submitted jobs, each Grid site either gets the needed input

data files to its local computing resource, schedules the job

at sites where the needed input data files are stored, or

transfers both the data and the job to a third site that

performs the computation and returns the result. In this

paper, we focus on the first approach. We leave the job

scheduling problem [40], which studies how to map jobs

into Grid resources for execution, and it’s coupling with

data replication, as our future research. We are aware of

very active research studying the relationship between

these two [10], [36], [14], [21], [12], [40], [17], [8]. The

focus of our paper, however, is on the data replication

strategy with a provable performance guarantee. As

demonstrated by the experiments of Chervenak et al. [15],

the time to execute a scientific job is mainly the time it

takes to transfer the needed input files from server sites to

local sites. Similar to other work in replica management

for Data Grids [28], [39], [8], we only consider the file

transfer time (access time), not the job execution time in

the processor or any other internal storage processing or

I/O time. Since the data are read only for many Data Grid

applications [36], we do not consider consistency

maintenance between the master file and the replica files.

For readers who are interested in the consistency

maintenance in Data Grids, please refer to [18], [40], [32].

III PROPOSED SYSTEM

Data replication and job scheduling are two different but

complementary functions in Data Grids: one to minimize

the total file access cost (thus total job execution time of

all sites), and the other to minimize the Makespan (the

maximum job completion time among all sites).There are

two main challenges: first, how to formulate a problem

that incorporates not only data replication but also job

scheduling, and which addresses both total access cost and

maximum access cost; and second, how to find an efficient

algorithm that, if it cannot find optimal solutions of

minimizing total/maximum access cost, gives near-optimal

solution for both objectives. The prime motive of data

replication in intensive application is that to reduce the

data file transfer time and bandwidth consumption. In

order to minimize the MakeSpan we use Optimal

MakeSpan algorithm and for polynomial time Nominal

Distribution strategy has been used and it reduces the total

data file access delay by at least half of that reduced is

proposed in this paper. Both the algorithms are adaptive to

the dynamic change of file access patterns in Data Grids.

Since grid applications run in a very heterogeneous

computing environment, fault tolerance is important in

order to ensure their correct behavior. Using GridSim, a

popular distributed Grid simulator, it can be demonstrated

that the technique significantly outperforms an existing

popular file caching technique in Data Grids.

i) System Architecture

Fig:1 System Architecture

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3142

Modules Description

• Building Sites

• Centralized Site

• Replica Sites

• Replica Distribution

• Optimal Cost Constraint

• Data Caching in Replicas

• Fault Tolerant Mechanism

• Makespan Algorithm

• CRC/NRC Updations

 Building Site

 In this module the centralized site is created. The sensus

dataset is collected and organized in the form of .txt Files.

As given in our paper the subsites are created according to

the files. For instance the number of files is equal to the

number of subsites. The top level site created is the

centralized management entity in the entire Data Grid

environment, and its major role is to mange the

Centralized Replica Catalogue (CRC). CRC provides

location information about each data file and its replicas,

and it is essentially a mapping between each data file and

all the institutional sites where the data is replicated. Each

site (top level site or institutional site) may contain

multiple grid resources. A grid resource could be either a

computing resource, which allows users to submit and

execute jobs, or a storage resource, which allows users to

store data files. We assume that each site has both

computing and storage capacities, and that within each

site, the bandwidth is high enough that the communication

delay inside the site is negligible.

 Replica Distribution

In this we predict the Optimizing cost constraint and

implement the Nominal Distribution Algorithm and then

transmit as One file per site and terminates replicating

files as per cost constraint.

 Optimal Cost Constraints
Let D be the centralized site.Assume Grid site G as the

centralized Site. Let the Site G has n jobs {j1,j2,-----------jn

} i.e Input Files M - A1,A2An, where Aj Ϲ V is a set

of Grid sites that store a replica copy of Dj,evaluate Total

No of jobs submitted, Assume that the Grid site i has ni

submitted jobs. The job is denoted as tik Which means that

needs a subset Fik of D as its input files. Calculate wij to

denote the number of times that site i needs Dj as an input

file, wij = where ck = 1 if Dj needs file Fik and

ck = 0 otherwise. The transmission time of sending data

file Dj along any edge (Network) is sj/B. We use dij to

denote the number of transmissions to transmit a data file

from site i and j (which is equal to the number of edges

between these two sites). The total data file access cost in

Data Grid before replication is the total transmission time

spent to get all needed data files for each site:

 Data Caching in Replicas

Objective is to minimize the total access cost in the Data

Grid:Our Nominal Distribution is a greedy algorithm.

First, all Grid sites have all empty storage space (except

for sites that originally produce and store some files).

Then, at each step, it places one data file into the storage

space of one site such that the reduction of total access

cost in the Data Grid is maximized at that step.

 Fault Tolerant Mechanism

A partial failure may happen when one component in such

system fails. This failure may affect the proper operation

of other components while at the same time leaving yet

other components totally unaffected. An important goal in

such systems design is to construct the system in a way

that it can automatically recover from partial failures

without seriously affecting the overall performance and

continue to operate in an acceptable way while repairs are

being made when applied to large scale distributed settings

(e.g., the Internet). In particular, they fail in providing the

desired degree of configurability, scalability, and

customizability.

 Makespan Algorithm

The job scheduling system is responsible to select best

suitable machines in a grid for user jobs. The management

and scheduling system generates job schedules for each

machine in the grid by taking static restrictions and

dynamic parameters of jobs and machines into

consideration.

 CRC/NRC Updations

The top level site maintains a Centralized Replica

Catalogue (CRC), which is essentially a list of replica site

list Cj for each data file Dj. The replica site list Cj contains

the set of sites (including source site Sj) that has a copy of

Dj. Nearest Replica Catalog (NRC). Each site i in the Grid

maintains an NRC, and each entry in the NRC is of the

form (Dj,Nj).Each site i original graph G has m memory

space, the nearest site that has a replica of Dj. When a site

executes a job, from its NRC, it determines the nearest

replicate site for each of its input data files and goes to it

directly to fetch the file (provided the input file is not in its

local storage). As the initialization stage, the source sites

send messages to the top level site informing it about their

original data files. Thus, the centralized replica catalog

initially records each data file and its source site. The top

level site then broadcasts the replica catalogue to the entire

Data Grid. Each Grid site initializes its NRC to the source

site of each data file. Note that if i is the source site of Dj

or has cached Dj, then Nj is interpreted as the second

nearest replica site, i.e., the closest site (other than i itself)

that has a copy of Dj. The second nearest replica site

information is helpful when site i decides to remove the

cached file Dj. If there is a cache miss, the request is

redirected to the top level site, which sends the site replica

site list for that data file.

For processing this module the data files are collected

again. The neighboring sites are analyzed and the files are

sent to the replicas.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3143

On successfully sending those files to replica sites, the

Localized data caching algorithm is implemented.. Since

each site has limited storage capacity, a good data caching

algorithm that runs distributedly on each site is needed. To

do this, each site observes the data access traffic locally

for a sufficiently long time. The local access traffic

observed by site i includes its own local data requests,

nonlocal data requests to data files cached at i, and the

data request traffic that the site i is forwarding to other

sites in the network.

The file request is consequently provided at the traffic

less sites.

IV CONCLUSION

In this paper we focus on how to replicate data files in data

intensive scientific applications, to reduce the file access

time with the consideration of limited storage space of

Grid sites along with fault tolerance. GridSim, a popular

distributed Grid simulator, is used to demonstrate a

technique that significantly outperforms an existing

popular file caching technique in Data Grids

References

[1] Dharma Teja Nukarapu, Liqiang Wang and Shiyong Lu “Data

Replication in Data Intensive Scientific Applications with Performance
Guarantee”, August 2011

[2] The Large Hadron Collider, http://public.web.cern.ch/Public/

en/LHC/LHC-en.html, 2011.
[3] Worldwide Lhc Computing Grid, http://lcg.web.cern.ch/LCG/, 2011.

[4] A. Aazami, S. Ghandeharizadeh, and T. Helmi, “Near Optimal

Number of Replicas for Continuous Media in Ad-Hoc Networks of
Wireless Devices,” Proc. Int’l Workshop Multimedia Information

Systems, 2004.

[5] B. Allcock, J. Bester, J. Bresnahan, A.L. Chervenak, C. Kesselman,
S. Meder, V. Nefedova, D. Quesnel, S. Tuecke, and I. Foster, “Secure,

Efficient Data Transport and Replica Management for High-Performance
Data-Intensive Computing,” Proc. IEEE Symp. Mass Storage Systems

and Technologies, 2001.

[6] I. Baev and R. Rajaraman, “Approximation Algorithms for Data
Placement in Arbitrary Networks,” Proc. ACM-SIAM Symp. Discrete

Algorithms (SODA), 2001.

[7] I. Baev, R. Rajaraman, and C. Swamy, “Approximation Algorithms
for Data Placement Problems,” SIAM J. Computing, vol. 38, no. 4, pp.

1411-1429, 2008.

[8] W.H. Bell, D.G. Cameron, R. Cavajal-Schiaffino, A.P. Millar, K.
Stockinger, and F. Zini, “Evaluation of an Economy-Based File

Replication Strategy for a Data Grid,” Proc. Int’l Workshop Agent Based

Cluster Computing and Grid (CCGrid), 2003.
[9] D.G. Cameron, A.P. Millar, C. Nicholson, R. Carvajal-Schiaffino, K.

Stockinger, and F. Zini, “Analysis of Scheduling and Replica

Optimisation Strategies for Data Grids Using Optorsim,” J. Grid
Computing, vol. 2, no. 1, pp. 57-69, 2004.

[10] M. Carman, F. Zini, L. Serafini, and K. Stockinger, “Towards an

Economy-Based Optimization of File Access and Replication on a Data
Grid,” Proc. Int’l Workshop Agent Based Cluster Computing and Grid

(CCGrid), 2002.

[11] A. Chakrabarti and S. Sengupta, “Scalable and Distributed
Mechanisms for Integrated Scheduling and Replication in Data Grids,”

Proc. 10th Int’l Conf. Distributed Computing and Networking (ICDCN),

2008.
[12] R.-S. Chang and H.-P. Chang, “A Dynamic Data Replication

Strategy Using Access-Weight in Data Grids,” J. Supercomputing, vol.

45, pp. 277-295, 2008.
[13] R.-S. Chang, J.-S. Chang, and S.-Y. Lin, “Job Scheduling and Data

Replication on Data Grids,” Future Generation Computer Systems, vol.

23, no. 7, pp. 846-860, Aug. 2007.

[14] A. Chebotko, X. Fei, C. Lin, S. Lu, and F. Fotouhi, “Storing and

Querying Scientific Workflow Provenance Metadata Using an Rdbms,”
Proc. IEEE Int’l Conf. e-Science and Grid Computing, 2007.

[15] A. Chervenak, E. Deelman, M. Livny, M.-H. Su, R. Schuler, S.

Bharathi, G. Mehta, and K. Vahi, “Data Placement for Scientific
Applications in Distributed Environments,” Proc. IEEE/ACM Int’l Conf.

Grid Computing, 2007.

[16] A. Chervenak, R. Schuler, C. Kesselman, S. Koranda, and B. Moe,
“Wide Area Data Replication for Scientific Collaboration,” Proc.

IEEE/ACM Int’l Workshop Grid Computing, 2005.

[17] A. Chervenak, R. Schuler, M. Ripeanu, M.A. Amer, S. Bharathi, I.
Foster, and C. Kesselman, “The Globus Replica Location Service:

Design and Experience,” IEEE Trans. Parallel and Distributed Systems,

vol. 20, no. 9, pp. 1260-1272, Sept. 2009.

[18] N.N. Dang and S.B. Lim, “Combination of Replication and

Scheduling in Data Grids,” Int’l J. Computer Science and Network

Security, vol. 7, no. 3, pp. 304-308, Mar. 2007.
[19] D. Du¨ llmann and B. Segal, “Models for Replica Synchronisation

and Consistency in a Data Grid,” Proc. 10th IEEE Int’l Symp. High

Performance Distributed Computing (HPDC), 2001.
[20] J. Rehn et al., “Phedex: High-Throughput Data Transfer

Management System,” Proc. Computing in High Energy and Nuclear

Physics (CHEP), 2006.
[21] I. Foster, “The Grid: A New Infrastructure for 21st Century

Science,” Physics Today, vol. 55, pp. 42-47, 2002.

[22] I. Foster and K. Ranganathan, “Decoupling Computation and Data
Scheduling in Distributed Data-Intensive Applications,” Proc. 11th IEEE

Int’l Symp. High Performance Distributed Computing (HPDC), 2002.

[23] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and Grid
Computing 360-Degrees Compared,” Proc. Grid Computing

Environments Workshop, pp. 1-10, 2008.

[24] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed
Diffusion: A Scalable and Robust Communication Paradigm for Sensor

Networks,” Proc. ACM MobiCom, 2000.

[25] J.C. Jacob, D.S. Katz, T. Prince, G.B. Berriman, J.C. Good, A.C.
Laity, E. Deelman, G. Singh, and M.-H Su, “The Montage Architecture

for Grid-Enabled Science Processing of Large, Distributed Datasets,”

Proc. Earth Science technology Conf., 2004.
[26] S. Jiang and X. Zhang, “Efficient Distributed Disk Caching in Data

Grid Management,” Proc. IEEE Int’l Conf. Cluster Computing, 2003.

[27] S. Jin and L. Wang, “Content and Service Replication Strategies in
Multi-Hop Wireless Mesh Networks,” Proc. ACM Int’l Conf. Modeling,

Analysis and Simulation of Wireless and Mobile Systems (MSWiM),
2005.

[28] H. Lamehamedi, B.K. Szymanski, and B. Conte, “Distributed Data

Management Services for Dynamic Data Grids,” unpublished.
[29] M. Lei, S.V. Vrbsky, and X. Hong, “An Online Replication

Strategyto Increase Availability in Data Grids,” Future Generation

Computer Systems, vol. 24, pp. 85-98, 2008.
[30] C. Lin, S. Lu, X. Fei, A. Chebotko, D. Pai, Z. Lai, F. Fotouhi, and J.

Hua, “A Reference Architecture for Scientific Workflow Management

Systems and the View Soa Solution,” IEEE Trans. Services Computing,
vol. 2, no. 1, pp. 79-92, Jan.-Mar. 2009.

[31] M. Mineter, C. Jarvis, and S. Dowers, “From Stand-Alone Programs

towards Grid-Aware Services and Components: A Case Study in
Agricultural Modelling with Interpolated Climate Data,” Environmental

Modelling and Software, vol. 18, no. 4, pp. 379-391, 2003.

[32] S.M. Park, J.H. Kim, Y.B. Lo, and W.S. Yoon, “Dynamic Data Grid
Replication Strategy Based on Internet Hierarchy,” Proc. Second Int’l

Workshop Grid and Cooperative Computing (GCC), 2003.

[33] J. Pe´rez, F. Garcı´a-Carballeira, J. Carretero, A. Caldero´ n, and J.
erna´ndez, “Branch Replication Scheme: A New Model for Data

Replication in Large Scale Data Grids,” Future Generation Computer

Systems, vol. 26, no. 1, pp. 12-20, 2010.
[34] L. Qiu, V.N. Padmanabhan, and G.M. Voelker, “On the Placement

of Web Server Replicas,” Proc. IEEE INFOCOM, 2001.

[35] I. Raicu, I. Foster, Y. Zhao, P. Little, C. Moretti, A. Chaudhary, and
D. Thain, “The Quest for Scalable Support of Data Intensive Workloads

in Distributed systems,” Proc. ACM Int’l Symp. High Performance

Distributed Computing (HPDC), 2009.
[36] I. Raicu, Y. Zhao, I. Foster, and A. Szalay, “Accelerating Large-

Scale Data Exploration through Data Diffusion,” Proc. Int’l Workshop

Data-Aware Distributed Computing (DADC), 2008.

http://public.web.cern.ch/Public/
http://lcg.web.cern.ch/LCG/

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3144

[37] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R. Sakellariou,

K. Vahi, K. Blackburn, D. Meyers, and M. Samidi, “Scheduling Data-
Intensive Workflows onto Storage-Constrained Distributed Resources,”

Proc. Seventh IEEE Int’l Symp. Cluster Computing and the Grid

(CCGRID), 2007.
[38] K. Ranganathan and I.T. Foster, “Identifying Dynamic Replication

Strategies for a High-Performance Data Grid,” Proc. Second Int’l

Workshop Grid Computing (GRID), 2001.
[39] A. Rodriguez, D. Sulakhe, E. Marland, N. Nefedova, M. Wilde, and

N. Maltsev, “Grid Enabled Server for High-Throughput Analysis of

Genomes,” Proc. Workshop Case Studies on Grid Applications, 2004.
[40] F. Schintke and A. Reinefeld, “Modeling Replica Availability in

Large Data Grids,” J. Grid Computing, vol. 2, no. 1, pp. 219-227, 2003.

[41] H. Stockinger, A. Samar, K. Holtman, B. Allcock, I. Foster, and B.

Tierney, “File and Object Replication in Data Grids,” Proc. 10th IEEE

Int’l Symp. High Performance Distributed Computing (HPDC)

